DZ-003-001209

Seat No.

First Year B. Sc. (Sem. - II) (CBCS) Examination April / May - 2015

IC.P-201: Industrial Chemistry

Faculty Code : 003 Subject Code : 001209

Time: $2\frac{1}{2}$ Hours] [Total Marks: **70**]

Instructions:

- (1) All the questions are compulsory
- (2) Figures to the right indicate maximum marks.
- (3) Draw labeled diagram wherever necessary.
- (4) Assume suitable data.
- (5) Question -1 carries 20 marks MCQ & should be written in the same answer sheet.
- (6) Question -2 & 3 carries 25 marks each.

MCQ

	Que: 1			20		
1		Bond is responsible for physisorption	l .			
	a.	Vanderwals	c.	Ionic		
	b.	Covalent	d.	None		
2	Accord	ing to Le Chateleir's principle increase in I	oressure leads to	o in adsorption.		
	a.	Increase	c.	Both		
	b.	Decrease	d.	None		
3	Quaternary Ammonium hydride is used as					
	a.	Cation Exchanger	c.	Both		
	b.	Anion Exchanger	d.	None		
4	The partial size range of colloidal solution is m					
	a.	1×10^{-9} to 1×10^{-9}	c.	1×10^{-9} to 100×10^{-10}		
		1 to 100		None		
5	Breding's arc method is method of preparation of colloidal solution.					
	a.	Condensation	c.	Both		
	b.	Dispersion	d.	None		
6		is Driving force for simple dialysis.				
	a.	Temperature gradient	c.	Gravitational		
	b.	Concentration gradient	d.	None		
7	Catalyst always the rate of reaction.					
	a.	Increases	c.	Alters		
	b.	Decreases	d.	None		
8		increases the activity of catalyst.				
	a.	Poison	c.	Activator		
	b.	Promoter	d.	None		
9	Rate of catalyst is maximum at					
	a.	High temperature		Optimum temperature		
	b.	Low temperature	d.	Random temperature		
10	Adiaba	tic flame temperature is also known as				
	a.	Practical flame temperature		Theoretical flame temperature		
	b.	Flame temperature	d.	Adiabatic reaction temperatur		
\mathbf{DZ}	-003-0	01209] 1		[Contd		

11	Permutit Process is also known as					
	a. Zeolite Process	c.	Boiling Process			
	b. Crude caustic Process	d.	All of the above			
12	Versene is also called as					
	a. EBT	C.	EDTA			
	b. Caustic soda	d.	Washing soda			
13	$\frac{\text{Moles Reacted}}{\text{Moles Charged}} \times 100 \text{ is called}$					
	a. % Yield	c	% Excess			
	b. % Conversion		Selectivity			
14			•			
17	For the reaction A+B \rightarrow C, C+A \rightarrow D $\frac{\text{Moles of C}}{\text{Moles of D}} \times 100 \text{ i}$					
	a. Yield		% Excess			
	b. % Conversion		Selectivity			
15	In separation of varnish, vegetable oil and oil-emulsion			liter is usea?		
	a. Tubular bowl	С.				
	b. Disc bowl		Leaf filter			
16	The shortest distance between two tubes is called		 Bandwidth			
	a. Clearance	= :	None of the above			
17	b. Tube pitch Paddle type impeller rotate with speed of		Notice of the above			
17			80 to 90 rpm			
	a. 400 to 800 rpm b. 50 to 150 rpm		1000 to 1500 rpm			
18	Which of the following driving force is responsible fo			ion?		
10	a. Temperature		Pressure			
	b. Super saturation		humidity			
19	The removal of air with help of liquid from suction lin		•			
1,	a. Air binding		Cavitation			
	b. Priming		NPSH			
20	In flash dryer, When liquid vaporize from wet solid, p	oressure of	system is			
	a. Decrease		Constant			
	b. Increase	d.	None of the above			
	<u>The</u>	ory				
	Que: 2 (a) Answer any Three		(06		
1)	Define: a) Physisorption b) Catalyst					
	Enlist: a) Output Devices of Computer b) Input Dev	ices of Con	nputer.			
	Differentiate Sensible and Latent heat with example.					
4)	State the law of conversation of Energy.					
-	Define: (a) Unbound moisture content (b) Cavitatio	n				
	Write a Merits and Demerits of Plate type Heat Excha					
•		_				
	Que: 2 (b) Answer any Three			09		
1)	Explain activation energy for catalytic reaction.					
-	Give comparison between Physisorption & Chemisor	ption.				
•	Explain deep well water in brief.					
•	Explain Heat of Solution and Heat of Mixing with example.					
	Discuss Tank crystallizer in brief.					
6)	Draw the figure of Positive-displacement compressor	r.				
-,						
	Que: 2 (c) Answer any Two		;	10		
1)	Derive equation of freundlich adsorption isotherm w	ith their ex	treme cases.			
2)) Explain application of adsorption in detail.					
	Discuss Ion-Exchange resin method for softening of hard water with schematic diagram.					
	Explain Change Can mixer in detail.					
•	Describe Jet Ejectors in detail.					

Que: 3 (a) Answer any Three

- 1) Define: a) Thixotropy b) Negative Catalyst
- 2) Define: a) Catalyst promoter b) Catalyst Poisoning
- 3) Explain Clerk's method with reaction.
- 4) What is Stoichiometric Coefficient?
- 5) Enlist the Merits and Demerits of Swenson-Walker Crystallizer.
- 6) Write a characteristic of Filter media.

Que: 3 (b) Answer any Three

09

06

- 1) Explain characteristics of catalytic reaction.
- 2) Explain auto catalysis with diagram.
- 3) In production of Sulfur trioxide, 100 Kmoles of SO₂ and 230 Kmoles of O₂ are fed to reactor. The product stream is found to contain 70 Kmoles of SO₃. Find the percent of conversion of SO₂.
- 4) Derive the relation between C_p and C_v.
- 5) Explain Tray dryer in brief.
- 6) Discuss Nutche filter in detail.

Que: 3 (c) Answer any Two

10-Marks

- 1) Explain Breding's arc method for preparation of colloids.
- 2) Explain Electrophoresis with diagram.
- 3) Explain Vertical tubular boiler with neat diagram.
- 4) Discuss the Spray dryer with schematic representation.
- 5) Describe Permutit process for softening of hard water.